Различия

Здесь показаны различия между двумя версиями данной страницы.

Ссылка на это сравнение

Предыдущая версия справа и слева Предыдущая версия
glossary:ring:ideal:quasi-regular [10.10.2011 04:56:10]
Ладилова Анна
glossary:ring:ideal:quasi-regular [10.10.2011 04:57:11] (текущий)
Ладилова Анна
Строка 32: Строка 32:
 __Предложение 3.__ Если левый идеал лево-квазирегулярный,​ то он квазирегулярный. __Предложение 3.__ Если левый идеал лево-квазирегулярный,​ то он квазирегулярный.
 <hidden onVisible="​Доказательство."​ onHidden="​Доказательство." ​ initialState="​invisible">​ <hidden onVisible="​Доказательство."​ onHidden="​Доказательство." ​ initialState="​invisible">​
-Пусть <​latex>​\rho</​latex>​ --- лево-квазирегулярный левый идеал кольца <​latex>​R</​latex>,​ и <​latex>​x\in\rho</​latex>,​ тогда <​latex>​x+a+ax=0</​latex>​ для некоторого <​latex>​a\in R</​latex>​. Заметим,​ что <​latex>​a\in\rho</​latex>,​ так как <​latex>​x,​ax\in\rho</​latex>​. Поэтому <​latex>​y+a+ya=0</​latex>​ для некоторого <​latex>​y\in R</​latex>​. Мы видим, что <​latex>​x</​latex>​ --- правый квазиобратный,​ а <​latex>​y</​latex>​ --- левый квазиобратный для элемента <​latex>​a</​latex>​. По предложению 1 они совпадают,​ то есть <​latex>​y=x</​latex>,​ и <​latex>​x+a+xa=0</​latex>​. Таким образом <​latex>​x</​latex>​ --- право-квазирегулярный элемент. В силу произвольности выбора <​latex>​x\in\rho</​latex>​ лево-квазирегулярный идеал является квазирегулярным.+Пусть <​latex>​\rho</​latex>​ --- лево-квазирегулярный левый идеал кольца <​latex>​R</​latex>,​ и <​latex>​x\in\rho</​latex>,​ тогда <​latex>​x+a+ax=0</​latex>​ для некоторого <​latex>​a\in R</​latex>​. Заметим,​ что <​latex>​a\in\rho</​latex>,​ так как <​latex>​x,​ax\in\rho</​latex>​. Поэтому <​latex>​y+a+ya=0</​latex>​ для некоторого <​latex>​y\in R</​latex>​. Мы видим, что <​latex>​x</​latex>​ --- правый квазиобратный,​ а <​latex>​y</​latex>​ --- левый квазиобратный для элемента <​latex>​a</​latex>​. По предложению 1 они совпадают,​ то есть <​latex>​y=x</​latex>,​ и <​latex>​x+a+xa=0</​latex>​. Таким образом <​latex>​x</​latex>​ --- право-квазирегулярный,​ а значит, ​квазирегулярный элемент. В силу произвольности выбора <​latex>​x\in\rho</​latex>​ лево-квазирегулярный идеал является квазирегулярным.
  <​latex>​\blacksquare</​latex>​  <​latex>​\blacksquare</​latex>​
 </​hidden>​ </​hidden>​
glossary/ring/ideal/quasi-regular.txt · Последние изменения: 10.10.2011 04:57:11 — Ладилова Анна
Наверх
CC Attribution-Noncommercial-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0